Scientific Abstract: Basal plane-functionalized NbS2 nanosheets were obtained using in situ photolysis to generate the coordinatively unsaturated organometallic fragment cyclopentadienyl manganese(I) dicarbonyl (CpMn(CO)2). This straight-forward, direct attachment process does not rely on defect chemistry or on intentional oxidation or reduction of the nanosheets. Under UV irradiation, a labile carbonyl ligand dissociates from the tricarbonyl complex, creating an open coordination site for bonding between the Mn atom and the electron-rich sulfur atoms on the surface of the NbS2 nanosheets. In contrast, no reaction is observed with 2H-MoS2 nanosheets under the same reaction conditions. This difference in reactivity is consistent with the electronic structure calculations, which indicate stronger bonding of the organometallic fragment to electron-poor, metallic NbS2 than to semiconducting, electron-rich MoS2. X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectroscopy, and powder X-ray diffraction (PXRD) were used to characterize the bonding between Mn and S atoms on the surface-functionalized nanosheets. We are optimistic that the insights gained from this study can be leveraged to identify and investigate other organometallic complexes that might be effective for functionalizing the basal planes of a number of TMDs, including MoS2.